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Abstract

We study the structure of biased social cognition which involves not simply
one’s belief about the beliefs of others, but also one’s belief about their beliefs
of one’s own belief. We find that while people naively project their informa-
tion onto differentially-informed others, they also anticipate differentially-
informed others’ projection onto them. In a principal-agent setting, we di-
rectly test the tight one-to-one structural relationship between the partial
extent to which the typical person projects her information onto others, ρ,
and the extent to which she anticipates but partially underestimates the pro-
jection of others onto her, ρ2. The data is remarkably consistent with the
parsimonious link implied by the model of projection equilibrium. Further-
more, the majority of subjects both think that others are partially biased, but
they also partially underestimate the extent of their bias. The result lends
support to the notion of biased social cognition arising as a combination of a
biased, but coherent fully ego-centric belief anchor with a partial probabilistic
adjustment to the truth.
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“I found the concept of hindsight bias fascinating, and incredibly impor-

tant to management. One of the toughest problems a CEO faces is convincing

managers that they should take on risky projects if the expected gains are

high enough. [...] Hindsight bias greatly exacerbates this problem, because

the CEO will wrongly think that whatever was the cause of the failure, it

should have been anticipated in advance. And, with the benefit of hindsight,

he always knew this project was a poor risk. What makes the bias particularly

pernicious is that we all recognize this bias in others but not in ourselves.”

R. Thaler, Misbehaving (2015).

1 Introduction

Despite growing interest in understanding how people’s beliefs actually deviate

from the truth (e.g., Tversky and Kahneman 1974, Camerer et al. 2004, Gen-

naioli and Shleifer 2010, Bénabou and Tirole 2016, Augenblick and Rabin 2018,

Jehiel, 2018), there is much less careful evidence on the metacogniton about such

tendencies, in particular, on whether people anticipate the biases of others. Do

they explicitly think that others form biased beliefs and if so, how well calibrated

they are? What is the relationship between people’s awareness of the biases of

others and the presence of the same kind of bias in their own judgement? These

issues have direct economic consequences and studying them can also guide the

kind of approaches aimed at increasing the realism of economic models of social

behavior.

The structure of an individual bias, such as a person’s misprediction of her

future preferences, can be described independently from her anticipation of the

same kind of mistake in others.1 The same is not true for a social bias, that is,

when people have biased beliefs about the beliefs of others. An agent’s perception

of how her principal thinks entails how he thinks she thinks. In turn, the definition

1In self-control problems, evidence suggests that people are too optimistic when predicting
the time they will take to complete a task, but more pessimistic when predicting the time others
will take, Buehler, Griffin, and Ross (1994). See also Pronin et al. (2002) in the context of
people thinking that others are more overconfident than they themselves are. In the context
of loss aversion, van Boeven et al. (2000) provide evidence consistent with the idea that people
anticipate the fact that ownership changes preferences but underestimate the extent of this change
both for themselves and for others.
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of a social bias must specify a person’s mistake and her perception of the mistakes

of others simultaneously.

Our paper then considers the domain of thinking about how others think,

forming beliefs about their beliefs. This domain, sometimes referred to as theory

of mind capacity, is essential for social cognition and strategic behavior. Fur-

thermore, in the presence of private information, evidence from ‘false-belief tasks’

(Piaget, 1953; Wimmer and Perner, 1983), hindsight tasks (Fischhoff, 1975), curse-

of-knowledge tasks in markets (Camerer et al., 1989), the illusion of transparency

(Gilovich et al., 1998), or the outcome bias (Baron and Hershey, 1988), point

to a robust shortcoming in this domain.2 People systematically under-appreciate

informational differences in that, they too often act as if others had the same

information they did.

Strategic choice, however, depends not simply on what basic information a

person assigns to others, i.e., her estimate of her opponent’s first-order beliefs

about the payoff state, that matters. Instead what a player thinks others think

she knows, and so on, is often equally key. To even formulate the phenomenon

of such informational projection, one must consider a person’s basic mistake and

her model of how others think, which includes her perception of this tendency in

others, simultaneously. At the same time, we are unaware of any prior empirical

or experimental evidence that carefully documents or structurally evaluates the

joint presence of such beliefs.

Anticipating the biases of others has direct economic implications. In agency

settings a principal—an investor or a board—evaluates the quality of an agent—an

executive, a doctor, or a public bureaucrat—by monitoring him with ex-post in-

formation. A principal who naively projects such ex post information exaggerates

how much the agent should have known ex ante. In turn, she misattributes the

informational gap between the ex ante and ex post stages to the lack of sufficient

skill (or ex ante effort) by the agent and underestimates the agent’s quality on

average. An agent who anticipates that the principal is biased will then want to

‘cover his ass’ and engage in defensive practices aimed at reducing this gap, e.g.,

distort the production of ex-ante information, undertake an ineffective selection

2Although hindsight bias is sometimes described as an intrapersonal phenomenon, the evidence
is predominantly from interpersonal settings.
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of tasks, or simply dis-invest from an otherwise efficient relationship, (Madarasz,

2012).3 Crucially, the presence of such defensive agency depends then jointly on

the principal naively exhibiting the basic bias and the agent also anticipating that

the principal has this biased tendency.

As an other example, consider classic common-value trade between an informed

dealer and an uninformed buyer as in Akerlof (1970). Suppose that the naive buyer

projects her ignorance and thinks that the dealer also does not know whether the

car is a peach or a lemon. It is an informed dealer who anticipates the buyer’s

projection, and, in turn, that the buyer under-appreciates the presence of the

winner’s curse, who will be prompted not to disclose the product’s quality and

still quote an excessive price whenever selling what she knows to be a lemon.

Systematic deception is a function of both the buyer projecting her ignorance on

the dealer, thinking that he does not know what she does not know, and the

dealer anticipating that the buyer has biased beliefs about what the dealer knows,

anticipating that her beliefs of his beliefs are too far from his beliefs.

Given the robust presence of the basic mistake, one may argue that its antici-

pation in others shall be uncommon; being aware of this mistake in others should

prompt a person to recognize and correct this tendency in herself. A salient ap-

proach may then be to adopt a dichotomous classification; a person is either naive

in that she is subject to this mistake and does not anticipate it in others, or she

does not exhibit this mistake and is (at least partially) sophisticated about the

presence of this mistake in others. Under this classic dichotomy, which is then in

contrast to what is suggested by the quote from Thaler (2015) above, the impli-

cations of this phenomenon depend directly on the way these different types sort

into different roles. An organization may best response by adopting an effective

sorting method of navies and sophisticates. The test of whether such a sharp di-

3A widely discussed example of such defensive agency can be found in the context of medical
malpractice liability. The radiologist Leonard Berlin, in his 2003 testimony on the regulation
of mammography to the U.S. Senate Committee on Health, Education, Labor, and Pensions,
describes explicitly how ex-post information causes the public to misperceive the ex-ante visual
accuracy of the mammograms produced by radiologists, implying that juries are “all too ready
to grant great compensation.” Berlin references the role of information projection in such ex-post
assessments, where ex-post information makes reading old radiographs much easier. In response,
physicians are reluctant to follow such crucial diagnostic practices: “The end result is that more
and more radiologists are refusing to perform mammography [...] In turn, mammography facilities
are closing.”
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chotomy provides a good approximation of the perceptual heterogeneity in reality

is then critical, but also appears to be missing from the literature.

Moving beyond this classic dichotomy, there is a bewildering variety of ways

in which a comprehensive account of the higher-order implications of this phe-

nomenon may be specified. At the other end of the above dichotomy, one could

opt for a fully flexible approach, with potentially many degrees of freedom describ-

ing such implications, in effect rejecting the idea of a parsimonious relationship

between the basic mistake and the anticipation of this mistake in others.

In contrast to such a skeptical stance, the model of projection equilibrium,

Madarasz (2014, revised 2016), offers a fully specified yet parsimonious general

account. It proposes a model of partial projection governed by a single scalar

ρ ∈ [0, 1). It postulates that a person’s belief hierarchy is a probabilistic mixture

of an all-encompassing projective fantasy of her opponent and an unbiased view

of her opponent. This projective fantasy is all-encompassing in the sense that

a person mistakenly believes that with probability ρ her opponent not only has

access to the same basic information about the payoff state as she does, but

also knows the way she thinks, i.e., her entire belief hierarchy. A player then

partially adjusts her expectations to the truth by placing the remaining weight on

an unbiased estimate of how her opponent thinks. The model ties together the

extent of one’s basic mistake and her anticipation of the mistake of others and

pins down the structure of mispredictions along each player’s belief hierarchy.

The model implies a one-to-one relationship between the partial extent to

which a player projects onto others (first-degree projection) and the extent to

which she anticipates, but partially underestimates the projection of others onto

her (second-degree projection). Our paper then introduces an experimental design

to understand the key issue of anticipation and the extent to which this account

may help organize key aspects of the data.

In our experiment, principals estimated the average success rate π of reference

agents in a real-effort task. While agents never received the solution to the task,

principals received the solution to the task prior to the estimation in the asym-

metric informed treatment, as in the case of monitoring with ex-post information,

but not in the symmetric uninformed treatment. Projection equilibrium predicts

that a principal in the former, but not in the latter treatment, should system-
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atically overestimate the agents’ success rate on average. We find that in the

uninformed treatment principal are well-calibrated. In contrast, consistent with

previous results, in the asymmetric treatment find a very strong exaggeration.

While the true success rate is 39% the principals’ estimate is 57% on average.

This difference allows us to identify the extent of first-degree projection in our

data.

To first obtain a qualitative response regarding anticipation, agents could

choose between a sure payoff and an investment whose payoff was decreasing

in the principal’s estimate of the success rate of the other agents performing the

task. Consistent with the comparative static prediction of projection equilibrium,

we find strong evidence of anticipation of projection in that 67.3% of agents in the

informed treatment as opposed to 39.2% in the uninformed treatment chose the

sure payment over the investment whose payoff was decreasing in the principal’s

estimate. In the context of defensive agency, the fraction of instances where the

agent, a doctor, a manager or an administrator is willing to take on ex ante risk

when she is monitored with ex post information drops by thirty percent.

We then turn to the main point of our paper. We elicited both agents’ first-

order and second-order estimates (their estimate of the principals’ estimates) of

the success rate of the reference agents. In the symmetric treatment, projection

equilibrium, just as the unbiased BNE, predicts that an agent’s first- and second-

order estimates should be unbiased on average and also equal the the principal’s

first-order estimate. Indeed the data confirms all of these predictions. In contrast,

in the informed treatment, while the same equivalence must hold under the unbi-

ased BNE, projection equilibrium predicts two key departures. Specifically, while

the agent’s first-order estimate shall be correct on average, (i) her second-order

estimate shall be higher than her own first-order estimate and (ii) her second-order

estimate shall be lower than the principal’s first-order estimate on average. We

find exactly this pattern. The agents’ second-order estimate is 51%. As implied

by projection equilibrium players explicitly anticipate that others are biased but

underestimate its extent.

Next we consider the link between the first- and second-degree projections.

The model predicts that the extent to which the principal exaggerates the success

rate in the informed treatment, shall fully pin down the extent to which the agent
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under-estimates the principal’s exaggeration in this treatment on average. If the

former is ρ(1− π), the latter shall be −ρ2(1− π) and vice versa. In our data the

degree of projection calculated based on the principal’s exaggeration of the success

rate is 0.326 while that calculated based on the agent’s underestimation of this

exaggeration is 0.334. We then perform a more careful econometric estimation

and show that the estimate which allows these two to freely differ and the one

which constraint these to be the same delivers very similar parameter estimates

and very similar log-likelihoods. The data thus directly supports the logic of

projection equilibrium.

Finally, we also describe (i) the distribution of the degree of projection in-

ferred from the principal population and (ii) the distribution of the degree pro-

jection inferred from the agent population. We document three main facts. First,

the majority of the principals are partially biased, they partially exaggerate the

success-rate of the agents. Second, the majority of the agents also exhibit a partial

bias; they believe that principals are partially biased but underestimate its extent.

Indeed, for the majority of our agents we can reject both the hypothesis that they

are fully naive about the biases of others and also that they fully anticipate the

biases of others. Instead we find that the majority of people believe that oth-

ers are partially biased and also partially underestimate the extent to which they

are. Third, and perhaps most surprisingly, we find that these two distributions

are remarkably close to each other. In sum, the data rejects the classification of

people into naive and sophisticated types and instead provides strong support for

the model of projection equilibrium and, more generally, to the underlying idea

of a social belief bias arising from a fully-egocentric but logically coherent anchor

with a partial adjustment to the truth.

To the best of our knowledge, our paper is the first to consider a structured

test of people’s beliefs about other people’s biased beliefs while also demonstrating

the impact of these on strategic behavior. The rest of the paper is organized as

follows. Section 2 presents the design, Section 3 the predictions, Section 4 the

results. In Section 5 we discuss alternative hypotheses and the issue of conditional

beliefs which provide further support for the mechanism proposed. In Section 6

we conclude.
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2 Experimental Design

2.1 Experimental task

All participants worked on the same series of 20 different change-detection tasks.

In each basic task the subjects had to find the difference between two otherwise

identical images. Figure 1 shows an example. The change-detection task is a

common visual stimulus (Rensink et al., 1997; Simons and Levin, 1997) and has

already been studied in the context of the curse-of-knowledge, Loewenstein et al.

(2006).

Image A Image B

Figure 1: Example of an image pair. Image sequence in the experiment: A, B, A,
B, . . . .

We presented each basic task in a short clip in which the two images were

displayed alternately with short interruptions.4 Afterwards, subjects could submit

an answer by indicating the location of the difference on a grid (see Instructions

in the Appendix).5

2.2 Principals

Principals had to estimate the performance of others in each basic tasks. Specif-

ically, the principals were told that subjects in previous sessions worked on the

tasks and that these subjects (reference agents, henceforth) were paid according

4Each image was displayed for one second, followed by a blank screen for 150 milliseconds.
The total duration of each clip was 14 seconds.

5See the instructions in the Appendix for more details.
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to their performance. The performance data of 144 reference agents was taken

from Danz (2014) where the subjects performed the tasks in winner-take-all tour-

naments and where they faced the tasks in the exact same way as the subjects in

the current experiment.

In each of the 20 rounds, the principals were first exposed to a new basic task.

Afterwards, the principal stated her estimate (bP ) of the fraction of reference

agents who spotted the difference in that task (success rate π henceforth). After

each principal stated his or her belief, the next round with a different basic task

started.6

For the principals the two treatments differed as follows. In the informed

(assymetric) treatment, principals received the solution to each basic task before

they went through the change-detection task. Specifically, during a countdown

phase that announced the start of each task, the screen showed one of the two

images with the difference highlighted with a red circle (see Figure 2). This mimics

various motivating economic examples, e.g., monitoring with ex post information

after an accident, a realized portfolio allocation decision, or a medical outcome

where the principal learns the ex post outcome and the case solved by the agent

ex ante at the same time. In the uninformed (symmetric) treatment instead, the

principals were not given solutions to the basic tasks (the same image was shown

on the countdown screen, but without the red circle and the corresponding note

in Figure 2). Principals in both treatments then went through each task exactly

as the reference agents did. The principals did not receive any feedback during

the experiment.

At the end of the sessions, the principals received e 0.50 for each correct answer

in the uninformed treatment and e 0.30 in the informed treatment. In addition,

they were paid based on the accuracy of their stated estimates in two of the

20 tasks (randomly chosen): for each of these two tasks, they received e 12 if

b ∈ [π − 0.05, π + 0.05], that is, if the estimate was within 5 percentage points of

the true success rate of the agents. We ran one session with informed principals,

and one with uninformed principals with 24 participants in each.

6The principals first participated in three practice rounds to become familiar with the interface.
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Task 1 of 20 starts in [sec]:             6 

Note: The difference is located in the red marked area (the previous performers did not receive a solution guide). 

Remaining time [sec]:  61 

Figure 2: Screenshot from the treatment with informed principals: Countdown to
the next task providing the solution (translated from German).

2.3 Agents

Agents in our experiment, in both treatments, were informed that in previous

sessions reference agents had performed the basic tasks being paid according to

their performance on the basic task and that principals had estimated the average

performance of these reference agents being paid according to the accuracy of their

estimates. The agents were further told that they had been randomly matched

to one of the principals at the outset of the experiment and that this matching

would remain the same for the duration of the experiment.

For the agents, the two treatments differed solely with respect to the kind of

principal they were matched to: in the informed treatment, agents were randomly

matched to one of the informed principals; in the uninformed treatment, agents

were randomly matched to one of the uninformed principals. In both treatments

the agents where made fully aware whether or not the principal has received the

solution (both of course not of the existence of the other treatment).

In each of the 20 rounds, the agents in both treatments first performed the

basic task in the same way as the reference agents did; that is, they went through

the images and then submitted a solution. Afterwards, following each of the first

10 change-detection tasks, the agent, in both treatments, stated his estimate of

10



the fraction of reference agents who spotted the difference in that task (first-order

estimate bIA henceforth) and his estimate of the principal’s estimate of that success

rate (second-order estimate bIIA henceforth). For the second 10 change-detection

tasks, the agent in both treatments decided between two options A and B. Option

A provided a sure payoff of e 4. Option B was a lottery where the agent received

e 10 if the principal’s estimate bP was not more than 10 percentage points higher

than the success rate π; otherwise, the agent received e 0. This decision, implicitly,

is also a function of the agent’s first and second-order beliefs about the success-

rate. Choosing option B can be thought of as an investment whose perceived

expected return is decreasing in the wedge between the agent’s second- and first-

order estimates. Throughout the paper, we will refer to this choice as the agents’

investment decision.

We have also ran separate sessions without belief elicitation, that is, where

the agents, following each of the 20 change-detection tasks, after solving this task

had to choose between option A and option B as described above. In the result

section we also present this data.

Agents also received feedback, in the exact same way in both treatments,

regarding the solution to each task right after solving the task. Specifically, the

screen showed one of the two images with the difference highlighted with a red

circle; then, the images were shown again. Agents matched to informed principals

were told that this feedback corresponded to what the principal had seen for that

task. Agents matched to uninformed principals were told the principals had not

received this solution to the task. In neither treatments, did agents receive any

information about the principals’ estimates.

Finally, agents received e 0.50 for each correct answer to the change-detection

tasks. In addition, at the end of the experiment one round was randomly selected

for additional payment. If this round involved belief elicitation, we randomly

selected one of the agent’s stated estimate for payment, namely, either her first-

or second-order estimate in that round.7 The subject received e 12 if her stated

estimate was within five percentage points of the actual value (the actual success

rate in case of a first-order estimate and the principal’s estimate of that success rate

7This payment structure addresses hedging concerns (Blanco et al., 2010).
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in case of a second-order estimate), and nothing otherwise.8 If the round selected

for payment involved an investment decision, the agent was paid according to her

decision.

2.4 Procedures

The experimental sessions were run at the Technische Universität Berlin in 2014.

Subjects were recruited with ORSEE (Greiner, 2004). The experiment was pro-

grammed and conducted with z-Tree (Fischbacher, 2007). The average duration

of the principals’ sessions was 67 minutes; the average earning was e 15.15. The

agents’ sessions lasted 1 hour and 45 minutes on average; the average payoff was

e 20.28.9 Participants received printed instructions that were also read out loud,

and had to answer a series of comprehension questions before they were allowed

to begin the experiment.10 At the end of the experiment but before receiving any

feedback, the participants completed the four-question DOSE risk attitude assess-

ment (Wang et al., 2010), a demographics questionnaire, the abbreviated Big-Five

inventory (Rammstedt and John, 2007), and personality survey (Davis, 1983).

3 Predictions

The predictions below are based directly on the model of projection equilibrium,

Madarasz (2016).11 To describe these for our design, let there be a set of payoff

states Ω, with generic element ω, and a prior φ over it. Player i’s information

about the state is generated by an information partition Pi : Ω → 2Ω, her action

set is given by Ai, and her payoff function by ui(ω, a) where a is an action profile.

The game is then summarized by Γ = {Ω, φ, Pi, Ai, ui}.
8We chose this elicitation mechanism because of its simplicity and strong incentives. In com-

parison, the quadratic scoring rule is relatively flat incentive-wise over a range of beliefs, and
its incentive compatibility is dependent on assumptions about risk preferences (Schotter and
Trevino, 2014). The Becker-DeGroot-Marschak mechanism can be confusing and misperceived
(Cason and Plott, 2014). The beliefs we elicited were coherent and sensible.

9The average duration of the sessions (the average payoff) in the treatments with and without
belief elicitation was 115 and 96 minutes (e 21.47 and e 19.10), respectively.

10Two participants did not complete the comprehension questions and were excluded from the
experiment.

11See https://works.bepress.com/kristof_madarasz/43/.
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Solving the basic task amounts to picking a cell x ∈ D from the finite grid on

the visual image. This is performed by all players. In the game corresponding to

our design, there are only two strategically active players: one agent and one prin-

cipal. The reference agents are strategically passive; they perform only the basic

task. Furthermore, they have a dominant strategy of maximizing the probability

of success. In what follows then subscript A refers to the strategically active agent

and subscript P to the principal. The action set of the principal, which includes

his estimation task, is AP = D × [0, 1]. The action set of the strategically active

agent, in the rounds where his two estimates are elicited, is AA = D× [0, 1]× [0, 1].

Since for no player i does the payoff from choosing xi directly interact with the

payoff from any other decision, we denote this payoff by f(xi, ω) and normalize it

to be one if the solution is a success and zero otherwise.12

Projection Equilibrium. Under projection equilibrium each player i, Annie,

best responds to a bias perception of her opponent j’s, Paul’s, strategy. Annie

assigns probability ρi to a strategy played by a fictional projected version of Paul

and probability 1 − ρi to Paul’s true strategy. The projected version of Paul

conditions his strategy on the exact same information about the payoff state as

Annie does, thus Annie projects both her basic information and her ignorance,

and best responds to Annie’s true strategy.13

Under projection equilibrium, each player i acts on the basis of a coherent

but biased belief hierarchy implicit in the above heuristic definition. This belief

hierarchy, which directly determines the predictions of the model for our design, is

determined by two key and simple psychological features. First, projection is all-

encompassing. Annie, assigns probability ρi to the projected version of Paul. This

fictional version of Paul shares, in each state, not only Annie’s information about

the payoff state; he also assigns probability 1 to Annie’s actual belief hierarchy.

He knows Annie’s beliefs. In the context of our design, Annie thinks that the

projected version of Paul has the same beliefs about the solution to the basic

12In our design, strategically active players always estimate the success rate of the strategically
passive agents. This ensures that there cannot be an equilibrium where the agent and the principal
may co-ordinate on sub-optimal performance on the basic task to achieve a higher earning on the
estimation tasks.

13In an N -person game, the projected versions of player i’s respective N−1 opponents occur in
a perfectly correlated manner, and player i believes that these projected versions of her opponents
know this. For a detailed presentation and discussion, see Madarasz (2016).
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task as she does, that Paul knows exactly what Annie believes about the solution

to this basic task, knows exactly her belief about what others believe about the

solution to the basic task, and so on. Second, Annie assigns positive probability

1 − ρi to the real version of Paul, that is, an, on average, unbiased estimate to

how he thinks and behaves in reality.

Bias Structure. In sum, Annie’s expectations are anchored to a coherent

all-encompassing projective fantasy of Paul which is adjusted partially and prob-

abilistically to the truth. The weight 1− ρi measures Annie’s partial adjustment

to reality away from her fantasy. Projection equilibrium, via the above two as-

sumptions of all-encompassing projection and partial adjustment to the truth, pins

down the meaning of informational projection for strategic settings. It implies a

polynomially vanishing tight bias structure along each player’s belief hierarchy.

In particular, it postulates a parsimonious one-to-one relationship between the

extent to which a player projects onto her opponent and the extent to which she

anticipates but under-appreciate the projection of her opponent onto her. The

predictions below will highlight this relationship.

Heterogeneous Projection. We first state the predictions under hetero-

geneous role-specific projections, that is, we allow the principal and the agent to

project to differing degrees, i.e., ρP 6= ρA may hold. This specification will already

greatly restrict the set of possible outcomes in our design.

Homogeneous projection. We then state the predictions under homoge-

neous projection, ρA = ρP . This case is of particular interest in our design. Since

we infer the basic bias from the choice of the principal and the misperception of

the principal’s bias from the choice of the agent, the homogeneous case allows

us to directly test the tight link which postulates that the former should fully

determine the latter and vice versa.

Before turning to the predictions some additional remarks are in order. Below,

we do not assume that people make the same inference from watching the video

of the alternating images per se. Instead, we allow players to obtain different

private signal realizations from watching the video, that is, about the change-

detection task. We assume only that, from the relevant ex-ante perspective, that

is, before the identity of each player is randomly determined, the distribution

of these signal realizations is the same for each player. In turn, the predictions
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below hold in the ex-ante expected sense. We focus on the average estimate

within each treatment and the predictions below express differences about such

average estimates across treatments. Later in the paper we return to the link

between conditional estimates and projection. Finally, the predictions below nest

the unbiased BNE, the prediction based on, on average, unbiased beliefs, i.e, ρi = 0

for i ∈ {A,P}.
Consider first the ex-ante probability with which a randomly chosen player i

who sees only the video can solve the basic task. Denote this success rate by π.

Formally, let

π ≡ Eω[max
x∈D

E[f(x, ω) | PA(ω)]].

Consider now the ex-ante expected difference between the above probability and

the success probability on the basic task by the principal. Formally, let

d ≡ Eω[max
x∈D

E[f(x, ω) | PP (ω)]]− Eω[max
x∈D

E[f(x, ω) | PA(ω)]].

In the uninformed (symmetric) treatment neither the agent nor the principal is

given the solution. Hence, by the law of iterated expectations, d = 0 must hold. In

the informed (asymmetric) treatment, the principal also has access to the solution.

Since the solution always helps solve the change-detection task, d > 0 must hold.

We can now turn to the predictions. The predictions already follow from

interim iterative dominance, e.g., Fudenberg and Tirole (1983), given the structure

of biased beliefs implied by the model. Hence, they not rely on a fixed-point

argument.14

Claim 1. Under projection equilibrium the principal’s ex-ante expected estimate

of π (denoted by bIP ) is π + ρPd.

In the uninformed treatment the principal’s estimate is unbiased. Her estimate

conditional on her own success or failure on the basic task may well be affected

by projection, e.g., it may be inflated following own success and deflated following

own failure. Such distortions, which cannot be pinned down in the absence of

14The predictions below also rest on the assumption that people report the mean of their
expectations.

15



further assumptions, however, must cancel out on average. This follows from the

fact that the agents and the principal have the same ex-ante probability of success

on the basic task in this treatment and roles are determined randomly. Even if

the principal fully projects; predicts success whenever she figures out the solution

and likely failure whenever she does not, her estimate is correct on average.

In the informed treatment, in contrast, the principal always knows the solution,

hence does so more often than the agents. A projecting principal then exaggerates

the probability with which the reference agents shall figure out the solution on

average, and does so by ρPd.

Claim 2. Under projection equilibrium the agent’s ex-ante expected

1. estimate of π (first-order estimate bIA) is π;

2. estimate of the principal’s estimate of π (second-order estimate bIIA ) is π+

(1− ρA)ρPd.

The model implies a systematic wedge between an agent’s own second-order

and first-order estimates in the informed but not in the uninformed treatment.

The agent’s first-order estimate is predicted to be unbiased in both treatments.

The reason is the same as for the principal in the uninformed treatment described

above. In the uninformed treatment the same holds for all estimates. Just as

under the unbiased belief hierarchy supporting the unbiased BNE, all estimates

are predicted to be equal to π on average. In short, on average, bIP = bIIA = bIA = π

must hold for any ρA, ρP ≥ 0.

In the informed treatment, the same equivalence holds under the unbiased

BNE. Projection equilibrium instead predicts two departures. First, the agent’s

second-order estimate is predicted to be systematically higher than his own first-

order estimate. Second, his second-order estimate is also predicted to be systemat-

ically lower than the principal’s first-order estimate. The former is due to the fact

that the agent anticipates the principal’s projection. The latter is due to the fact

that, in proportion to his own projection onto the principal, he underestimates

the principal’s exaggeration. In short, on average, bIP > bIIA > bIA = π holds iff

ρA, ρP > 0.
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To describe the logic, note that if ρA = 0, only the second inequality is strict.

An unbiased agent does not project and fully anticipates the principal’s bias,

hence, there is no wedge between his second-order estimate and the principal’s

first-order estimate. In contrast, if ρA → 1, only the first inequality is strict and

bIIA = bIA . A fully biased agent thinks that the principal (and the reference agents)

always believes the same thing about the solution to the task as he does and, by

virtue of projection being all-encompassing, that the principal always knows what

he (and the reference agents) believe about the solution to the task. In turn, there

is no wedge between the agent’s first-order and second-order estimates. Given

a partially biased agent, however, under projection equilibrium, all of the above

inequalities hold strictly.

The implication of the model to our design under heterogeneous projection is

that the agent anticipates but partially underestimates the principal’s exaggera-

tion of π in the informed treatment. Under homogeneous projection the predic-

tions are further refined. Here, by virtue of all-encompassing projection, the extent

of the principal’s exaggeration of the success rate, driven by her own projection

onto the agents, fully pins down the extent to which the agent underestimates this

exaggeration, due to the agent’s own projection onto the principal, on average and

vice-versa.

The table below summarizes the predicton of the polynomially vanishing bias

structure along the player’s belief hierarchy in this case.

Ex-ante expected bias Uninfo Treatment Info Treatment

principal’s first-order estimate 0 ρ(1− π)

agent’s first-order estimate 0 0

agent’s second-order estimate 0 −ρ2(1− π)

Finally, as mentioned, we also consider a less structured setting where the

principal’s action set is unchanged, but where the strategically active agent’s action

set is AA = D × {Invest, Not Invest}.

Claim 3. Under projection equilibrium, iff ρA, ρP > 0, the agent’s propensity to

invest is lower in the informed than in the uninformed treatment on average.
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The model implies that the agent attaches weight ρA to the projected version

of the principal and weight 1 − ρA to an unbiased estimate of the real version of

the principal. The agent’s estimate of the projected version’s beliefs, conditional

on any given performance of the agent on the basic task, is the exact same in both

treatments. The agent’s estimate of the real version’s beliefs, again conditionally

on any given own performance on the task, is strictly higher, in the sense of first-

order stochastic dominance, in the informed than in the uninformed treatment.

Hence, the agent is predicted to invest less often in the lottery whose return

is decreasing, in the sense of first-order stochastic dominance, in the principal’s

beliefs of the success-rate in the former than in the latter treatment.

4 Results

4.1 Principals

The data on the principals’ estimates confirms Claim 1. Principals in the unin-

formed treatment are, on average, very well calibrated: there is virtually no dif-

ference between their average estimate 39.76% and the true success rate 39.25%

(p = 0.824).15 In contrast, principals in the informed treatment grossly overesti-

mate the success rate for the vast majority of tasks.16 Their average estimate of

the success rate amounts to 57.45% which is significantly higher than both the true

success rate (p < 0.001) and the average estimate of the principals in the unin-

formed treatment (p < 0.001). Accordingly, principals in the informed treatment

had significantly lower expected earnings (e 2.40) than principals in the unformed

treatment (e 3.65; one-sided t-test: p = 0.034).17

15We employed a t-test of the average estimate per principal against the average success rate
(over all tasks). Figure 5 in the Appendix shows the distribution of individual performance
estimates by informed and uninformed principals together with the actual performance of the
reference agents. A Kolmogorov-Smirnov test of the distributions of average individual estimates
between treatments yields p = 0.001. Unless stated otherwise, p-values throughout the result
section refer to (two-sided) t-tests that are based on average values per subject.

16Figure 6 in the Appendix provides a plot of the principals’ average first-order belief per
treatment over time.

17The average payoffs in the rounds randomly selected for payment were e 1.50 and e 2.50 in
the informed and the uninformed treatment, respectively.
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Result 1. Principals in the informed, but not in the uninformed, treatment over-

estimate the true success rate on average.

The above result and the size of the exaggeration is not surprising given the

previous findings in the literature, e.g., Loewenstein, Moore and Weber (2006).

Reproducing this reinforces the validity of our experiment.18

4.2 Agents

4.2.1 Investment decisions

We now move to the agent’s investment decision. The data clearly supports

Claim 3.19 Agents matched to informed principals invest at a significantly lower

rate than agents matched to uninformed principals.20 The average investment

rate of agents matched to uninformed principals is 67.3%, whereas the average in-

vestment rate of agents matched to informed principals is only 39.2% (p < 0.001).

Result 2. Agents invest significantly less often in the informed than in the unin-

formed treatment.

The agents in the informed treatment, relative to agents in the uninformed

treatment, shy away from choosing an option whose payoff decreases, in the sense

of first-order stochastic dominance, in the principal’s belief. Result 2 is consistent

18Following Moore and Healy (2008), we can also examine the extent to which task difficulty
per se plays a role here. If we divide the tasks into hard and easy ones by the median one (yielding
10 hard tasks with success rates of 0.42 and below and 10 easy tasks with success rates of 0.43
and above), we find that principals in the uninformed treatment, on average, overestimate the
success rate for hard tasks by 7 percentage points (p = 0.047, sign test) but underestimate the
true success rate for easy tasks by 6 percentage points (p = 0.059). This reversal is well known as
the Bayesian hard-easy effect as described by Moore and Healy (2008). This reversal, however, is
not observed for principals in the informed treatment. The difference between the informed and
uninformed treatments is significant for both easy and hard tasks (p < 0.01 for each difficulty
level). Principals in the informed treatment significantly overestimate the success rate by 21
percentage points for hard and by 16 percentage points for easy tasks.

19Figure 7 in the Appendix shows the distribution of individual investment rates in the informed
and the uninformed treatment.

20We pool the sessions with belief elicitation and those without. Within the informed [unin-
formed] treatments, the average investment rates per agent in sessions with belief elicitation do
not differ from the average investment rates in sessions without belief elicitation (t-test, p = 0.76
[p = 0.70]). There are also no significant time trends in the investment rates (see Figure 8 in the
Appendix).
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with agents anticipating the projection of the principals. Recall that for the agents

the only difference between the two treatments is that the agent in the informed

treatment was told that his principal had access to the solution while the agent

in the uninformed treatment was told that his principal had not been given the

solution. Hence, the difference in the propensity to invest has to do with the

difference between the agent’s first-order and second-order beliefs.21

4.3 Stated Beliefs

We now turn to the key structured hypothesis of our study. Figure 3 summarizes

our first key findings. It shows a bar chart which collects the average stated

estimates of the agents in each treatment together with the true success rate and

the corresponding estimates of the principals.

The left panel shows the data from the uninformed treatment. Under pro-

jection equilibrium, all beliefs shall be correct on average. This is indeed what

we find. None of the elicited estimates are, on average, significantly different

from the true success rate: not the agents’ first-order estimates (p = 0.917), not

their second-order estimates (p = 0.140), nor the principals’ first-order estimates

(p = 0.337).22

The right panel shows the data from the informed treatments. The principals

vastly overestimate the true success rate, while the agents’ first-order estimates

are well calibrated on average (p = 0.967), as predicted. The agents’ second-

order estimates, as predicted, are significantly higher than their own first-order

estimates (p < 0.001) on average. Finally, as predicted, the agents’ second-order

estimates are also significantly lower than the principals’ estimates (one-sided

t -test: p = 0.047). Agents both anticipate and underestimate the principals’

mistaken exaggeration.

When comparing treatments, the agents’ first-order estimates are not signifi-

cantly different (p = 0.956) across treatments. The agents’ second-order estimate

21We find no significant treatment difference in the performance of agents (their success rate
is 41.35% in the informed treatment and 39.89% in the uninformed treatment; p = 0.573). Thus,
any treatment differences in the agents’ investment decision or the agents’ beliefs cannot be
attributed to differences in task performance.

22In the informed treatment, the agents’ second-order estimates are somewhat higher than the
principals’ first-order estimates, but this difference is not significant either (p = 0.080).
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Figure 3: Agents’ first-order estimates (estimates of the success rate) and second-
order estimates (estimates of the principals’ estimate), conditional on being
matched with informed or uninformed principals. Capped spikes represent 95%
confidence intervals.

in the informed treatment is significantly higher than the same in the uninformed

treatment (p = 0.0314 for one-sided t-test). Finally, the difference between the

agents’ second- and own first-order estimates is also significantly larger in the in-

formed than in the uninformed treatment (p < 0.001).23 In sum, the following

results hold for the agent’s beliefs.

23The size of the treatment effect on the principals’ estimates and also on the wedge between
the agents’ first- and second-order estimates is unchanged when controlling for successful task
performance. The treatment difference is also robust to controlling for individual characteristics
(see Tables 5 and 6 in the Appendix, respectively).
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Result 3 (Partial anticipation of information projection). The following results

hold:

1. The agent’s first-order estimate about the success rate is correct on average

in both treatments.

2. The difference between the agent’s second-order estimate and her own first-

order estimate is significantly larger in the informed than in the uninformed

treatment.

3. In the informed treatment, the agent’s estimate of the principal’s estimate is

higher than the agent’s own estimate and lower than the principal’s estimate.

The evidence clearly violates the predictions of the unbiased beliefs supporting

an unbiased BNE, but confirms all predictions on the structure of biased beliefs

postulated under projection equilibrium.

4.4 Estimation of Projection Equilibrium

The analysis has confirmed all four predictions on the structure of biased beliefs

under projection equilibrium. We now turn to the even tighter structure implied

by homogeneous projection. Recall that the key aspect of the parsimony of the

model is that the extent of first-degree projection fully determines all higher-order

implications and in particular the extent of her awareness of the biases of others,

e.g., a player’s second-degree projection. The former is recoverable from a player’s

misprediction of differentially-informed others’ first-order beliefs, the latter from a

player’s misprediction of differentially-informed others’ prediction of her first-order

beliefs. In our design, the former is inferred from the choices of the principals and

the latter from the choices of the agents. Under heterogeneous projection, i.e.,

ρA 6= ρP , these two can then differ substantially, and the prediction is simply

that the agent underestimates the principal’s exaggeration. Under homogeneous

projection, however, i.e., ρ = ρA = ρP , these two must match and the extent

to the principal’s exaggeration needs to fully match the extent of the agent’s

underestimation of this exaggeration.
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To test this key aspect of the model, we first use the aggregate data to solve

Claim 1 and 2 under heterogeneous projection. This yields the unique solution

of ρ̂P = 0.3 and ρ̂A = 0.33. That is, the degree of projection inferred from the

mistake in the principals’ second-order beliefs and the degree of projection inferred

from the mistake in the agents’ third-order beliefs are remarkably close to being

homogeneous. The extent to which the principal exxaggerates the success rate is

very close to being the square-root of the extent to which the agent underestimates

this exaggeration.

4.4.1 An Econometric Analysis

We now turn to an econometric test of the hypothesis of homogenous projection.

We employ a Maximum Likelihood estimation of a random-coefficient model and

start with a flexible specification that allows for different degrees of projection

both across roles as well as within roles. The parameters of the unrestricted

model are ΘUR = {ρP , ρA, φρ, φb}, where ρP and ρA denote the average degree of

projection in the principal and the agent populations, respectively, and φρ and φb

are precision parameters governing variance in individual projection and noise in

response, as will become clear in a moment. We then estimate the model under

homogeneous projection, i.e., with restricted parameters ΘR = {ρP = ρA, φρ, φb}.
In our design, a comparison of the restricted and the unrestricted specification

provides the ultimate test since it directly ties together the extent of the basic

mistake with the extent of its anticipation in others.

Our econometric model makes repeated use of the beta distribution. We

will use a convenient alternative parameterization of the beta distribution

x ∼ Beta(µ, φ) with density

f(x;µ, φ) =
Γ(φ)

Γ(φµ)Γ(φ(1− µ))
xφµ−1(1− x)φ(1−µ)−1,

where the first parameter µ is the expected value of x and the second parameter

φ is a precision parameter that is inversely related to the variance of x, var(x) =

µ(1 − µ)/(1 + φ) (Ferrari and Cribari-Neto, 2004). That is, conditional on the

mean µ, higher values of φ translate into a lower variance.
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Our first structural assumption concerns the errors subjects make in their

estimates. In the following we assume that subjects stated estimates are beta

distributed centered around the task- and individual-specific expectations given

by Claim 1 and Claim 2. Specifically, the estimate of principal i and agent j in

period t are

bIPit ∼ Beta(µPit, φb),

bIIAjt ∼ Beta(µAjt, φb),
(SA1)

where

µPit = ρPi
+ (1− ρPi

)πt, (see Claim 1)

µAjt = πt + (1− ρAj
)ρP (1− πt). (see Claim 2)

Our second structural assumption captures unobserved individual heterogene-

ity in the degree of informational projection and accounts for repeated observations

on the individual level. We employ a random-coefficient specification where indi-

vidual degrees projection in the principal and the agent populations follow beta

distributions with

ρPi
∼ Beta(ρP , φρ),

ρAj
∼ Beta(ρA, φρ).

(SA2)

We impose tight restrictions on the distributions of the degree of projection in the

agent and the principal populations by allowing them to differ only with respect

to their location parameter. This greatly facilitates our test of equality of the

average degree of projection across roles which is in the focus of this section. We

take a closer look at heterogeneity and provide a test of this structural assumption

in section 4.5.

We now formulate the log-likelihood function. Conditional on ρki and φρ,

the likelihood of observing the sequence of stated estimates (bkit)t of subject i in

role k ∈ {A,P} is given by

Lki(ρki , φb) =
∏
t fb
(
bkit;µkit(ρki), φb

)
.
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Hence, the unconditional probability amounts to

Lki(ρk, φρ, φb) =

∫ [∏
t fb
(
bkit;µkit(ρki), φb

)]
fρ
(
ρki ; ρk, φρ

)
dρki . (1)

The joint log likelihood function of the principals’ and the agents’ responses can

then be written as

l(ρP , ρA, φρ, φb) =
∑

k

∑
i logLki(ρk, φρ, φb). (2)

We estimate the parameters in (2) by maximum simulated likelihood (Train 2009;

Wooldridge, 2010).24 Table 1 shows the estimation results for the unrestricted

model with ρP 6= ρA in the left column and the restricted model with ρP = ρA

in the right column.25 We focus on the unrestricted model first where we make

three observations.

First, the principals’ average degree of projection is estimated to be ρ̂P = 0.326

with a confidence interval of [0.247, 0.405]. This estimate clearly indicates the

relevance of informational projection: the unbiased BNE—which is the special

case where ρP is zero—is clearly rejected. Second, the agents’ average degree of

projection, the extent to which the agent under-appreciates the principal’s bias is

estimated to be 0.334 with a confidence interval of [0.110, 0.558]. The ρ̂A = 0.334

estimate—which is significantly different from 0 and 1—gives structure to our

observation that agents do anticipate that the principals are partially biased—but

under-anticipate the principals’ level of projection.

Crucially, the estimated parameters of the degree of projection are not signif-

icantly different between the principals and the agents (p = 0.914). Furthermore,

the log likelihood of the unrestricted model is very close to the one of the restricted

model (right column of Table 1), and standard model selection criteria (e.g., BIC)

clearly favor the single-parameter model of homogeneous projection over the un-

24The estimation is conducted with gauss. We use Halton sequences of length R = 100, 000
for each individual with different primes as the basis for the sequences for the principals and the
agents (see Train 2009, p221ff).

25The results are robust with respect to alternative starting values for the estimation procedure.
All regressions for a uniform grid of starting values converge to the same estimates (both for the
restricted and the unrestricted model). Thus, the likelihood function in (2) appears to assume a
global (and unique) maximum at the estimated parameters.
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Table 1: Maximum likelihood estimates of projection bias ρ based on
Claim 1 and 2.

Unrestricted model Restricted model
with heterogeneous ρ with homogeneous ρ

(ρP 6= ρA) (ρP = ρA)

Parameter Estimate Conf. interval Estimate Conf. interval

ρP 0.326∗∗∗ [0.247, 0.405]
0.324∗∗∗ [0.252, 0.397]

ρA 0.334∗∗ [0.110, 0.558]

φρ 3.103∗∗∗ [1.169, 5.036] 3.092∗∗∗ [1.177, 5.007]

φb 4.377∗∗∗ [3.938, 4.815] 4.377∗∗∗ [3.939, 4.815]

N 720 720
lnL 123.597 123.593

Note: Values in square brackets represent 95% confidence intervals. Asterisks represent
p-values: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01 Testing H0 : ρP = ρA in column (1) yields
p = 0.8389.

restricted model with two parameters. In short, the data is remarkably consistent

with the structure of biased beliefs implied by projection equilibrium, that is, the

tight link between the basic mistake and the mistake in the anticipation of this

basic mistake in others.

4.5 Partial Bias and Partial Anticipation

The final, but crucial, part of the analysis is devoted to exploring individual degrees

of informational projection. This analysis provides the ultimate test of the idea

of a partial bias and the underlying notion of a coherent but mistaken egocentric

belief hierarchy with partial adjustment to the truth at the individual level. This is

done in conjunction with a test of the econometric specification with regard to the

structural assumption (SA2) made above. Specifically, we test whether the mean

degree of projection ρ̂ = 0.324 estimated from (2) is indeed generated by a beta

distribution of ρki . A misspecification in this matter would not only be relevant

from an econometric point of view; it may also challenge the interpretation of our

results. In particular, if the estimated average degree of projection is the result of
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a mixture of some people being naive and not anticipating the mistakes of others

at all (ρ = 1) and others being sophisticated fully anticipating it (ρ = 0), then

Claim 2 and the logic of partial anticipation and partial adjustment would have

no descriptive accuracy on the individual level.

We base our specification test on non-parametric density estimates of indi-

vidual degrees of projection in the principal and agent populations. To this end,

we first obtain individual estimates of ρ for each principal and each agent from

the informed treatment using simple linear regressions without imposing any re-

strictions on the size or the sign of the parameters. In contrast to the previous

subsection, we now adopt a simple OLS framework and use the subjects’ condi-

tional estimates, that is, their estimates conditional on their own performance in

the task. Specifically, for each principal i in the informed treatment, we estimate

her degree of projection ρPi
from Claim 1 via:

bIPit = πt + ρPi
(1− πt) + εit, (3)

where εit denotes an error term with mean zero and variance σ2
i . Analogously, for

each agent j in the informed treatment we estimate his degree of projection ρAj

from Claim 2 via

bIIAjt = bIAjt + (1− ρAj
)ρP (1− πt) + εjt, (4)

where ρP is the mean projection bias in the principal population, and εjt denotes

an error term with mean zero and variance σ2
j . For a derivation of these equations

see the Appendix.26 We estimate the parameters in (3) and (4) by OLS, where we

substitute ρP in (4) with the average estimate of ρPi
obtained from the regressions

in (3).27

26The results are very similar and qualitatively the same when using the agents’ first-order esti-
mates instead of the true success rates in (4). Figure 13 in the appendix shows the corresponding
distribution of individual ρ estimates for a comparison with Figure 4.

27We base all inference on the individual level on heteroskedasticity-robust standard errors.
Unlike in the simultaneous estimation of the agents’ and the principals’ projection bias from
(2), the simple estimation approach applied here assures that the individual estimates of the
principals’ projection bias are not informed by the data of the agents’ choices, a feature that is
desirable for our specification test below. Figure 11 in the Appendix plots the average predicted
second-order estimate together with the actual second-order estimates of the agents.
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Figure 4: Empirical cumulative distribution functions of principals’ (solid) and
agents’ (dashed) projection bias ρ in the informed treatment. The smooth line
shows the estimated beta distribution from the model with homogeneous projec-
tion (right column in Table 1).

Figure 4 shows the empirical CDFs of the individual degrees of projection in

the principal and the agent populations. A casual inspection of the figure already

suggests that the empirical CDFs of the principals’ and the agents’ ρs are quite

similar. In fact, a Kolmogorov-Smirnov test does not reveal any significant dif-

ference between the distributions (p = 0.441). That is, not only are the average

degrees of projection exhibited by the principals, inferred from their basic mis-

take, and the agents, inferred from the extent of their under-appreciation of the

principals’ basic mistake, are the same, but the two distributions describing the

underlying heterogeneity and the distribution of partialness in one and the other

are also not significantly different.

Second, and crucially, as is visible on Figure 4, partial projection is the norm

both when it comes to first-degree projection and second-degree projection (the
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mistake in the anticipation). The majority of the principals (70.8%) exhibit an

estimated ρ that is significantly larger than zero and significantly smaller than

one. Similarly, the majority of the agents (50%) have an estimated ρAj
that

is significantly larger than zero, but significantly smaller than one.28 People do

believe that others are partially biased and partially underestimate its extent.

Finally, Figure 4 conveys an additional result regarding the econometric spec-

ification in (2). The pooled empirical CDF of the principals’ and the agents’ pro-

jection is not significantly different from the beta distribution fρ(ρ̂ = 0.324, φ̂ρ =

3.092) obtained from model (2) with homogeneous projection (smooth line in Fig-

ure 4; Kolmogorov-Smirnov test: p = 0.529).29

In sum, the findings lend surprisingly strong support to the most parsimo-

nious specification of projection equilibrium and, perhaps more importantly, to

the realism of underlying logic a partial belief bias.

5 Discussion

We are unaware of any other existing model of strategic behavior that would

provide a tight explanation of the data. Below we describe the implications of

some leading candidates from the literature.

5.1 Alternative Models and Mechanisms

Coarse Thinking. Unlike a number of other prominent behavioral models of

play in games with private information, projection equilibrium focuses on players

misperceiving others’ beliefs, and having wrong explicit beliefs about the beliefs

28The second most common category (33.3%) in the agent population is ρ being not significantly
different from 0 but significantly different from 1, i.e., full anticipation of others’ information
projection. Further 12.5% of the agents have an estimated ρ that is not significantly different from
1 but significantly different from 0, i.e., no anticipation of the principals’ information projection.
One agent (the remaining 4.2% of the agents) has an estimated ρ that is significantly larger than
one. The corresponding fractions for the principals are similar and there is no significant difference
between the agents’ and the principals’ categorized distribution of projection bias (Fisher’s exact
test: p = 0.179).

29The separate empirical CDFs principals’ and the agents’ degree of projection are also well
described by beta distributions Kolmogorov-Smirnov tests of the empirical CDF against the
best-fitting beta distribution yields p = 0.941 for the principals and p = 0.974 for the agents.

29



of others rather than misperceiving the relationship between other players’ be-

liefs and their actions. In particular, the models of ABEE (Jehiel, 2005), and

cursed equilibrium (Eyster and Rabin, 2005), assume that people have correct

expectations about the information of others, but have coarse or misspecified ex-

pectations about the link between others’ actions and their information. Crucially,

these models are then closed by the identifying assumption that those expectations

are nevertheless correct on average, that is, each player has correct expectations

about the distribution of her opponent’s actions.

The above identifying assumption directly implies that in our design, both

models have the same overall predictions as the unbiased BNE. In the context

of the current experiment, they both imply a null treatment effect. A principal

should never exaggerate the agent’s performance on average and the agent should

never anticipate any mistake by the principal on average.30

Note also, that in these alternative models, unlike under projection equilib-

rium, people need not have coherent beliefs about the beliefs of others. For exam-

ple, for a partially cursed player it may not be possible to justify her expectation

about her opponent’s behavior based on some belief about his beliefs and his ra-

tionality, e.g., she has to be believe that he acts irrationally given his information

and with some probability.

Risk Aversion. We find no evidence that risk aversion matters for the sub-

jects’ choices. (See Tables 3 and 6 in the Appendix). Note also that if more

information helps unbiased principals to make more accurate forecasts on aver-

age, under unbiased beliefs, or the absence of any anticipation of the projection

of others, and risk aversion, the agent should be choosing the risky option over

the safe option more often when the principal is informed rather than when she is

not. Instead we find the exact opposite pattern.

Overconfidence. Note that overconfidence cannot explain the subjects’

choices either. If an agent believes that she is better than average, then she

might underestimate the reference agents’ performance relative to her own, but

this will not differ across treatments. Furthermore, as the data shows, both of

30Note also that QRE also predicts no treatment difference since the principal’s incentives in
the two treatments are exactly the same. The same is true for level-k models that hold the level
zero play constant across treatments.
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these estimates, and also that of the principals in the uninformed treatment, are

in fact unbiased. Similarly, a principal may be over- or under-confident when in-

ferring about others’ performance on a given task, but there is no reason for this

to systematically interact with the treatment.

Everybody is just like me. Finally, one may propose a general heuristic

whereby people simply think that others are just like them, whatever this may

mean. While the exact meaning of such a heuristic may be unclear, note that if

people just believed that others have the same beliefs as they do, then we cannot

account for our key finding; the systematic wedge between the majority of the

agents’ own first-order and second-order beliefs in the informed treatment, that

is, the fact that the typical subject explicitly thinks that others form systematically

wrong beliefs about her beliefs. The same then holds a fortiori about the data

providing support for partial bias at the individual level.

5.2 Conditional Estimates

Note that in the absence of further assumptions we cannot pin down the wedge

between the unbiased and biased conditional estimates, that is players’ estimates

conditional on whether or not they themselves were able to solve the task because

we do not know the unbiased conditional estimates only the unbiased average es-

timate. At the same time, players’ conditional beliefs within a treatment, that

is, conditional on whether or not they themselves were able to solve the task,

shall also be affected by their bias under projection equilibrium. In particular,

within the uninformed treatment, a principal who figures out the solution herself,

by projecting her information, shall comparatively exaggerate the success rate of

others and a player who does not figure it out, by projecting her ignorance, shall

comparatively underestimate the success rate. Projection thus inflates the differ-

ence between these conditional estimates. Consistent with this, in the uninformed

treatment the principal’s estimate of the success rate conditional on spotting the

difference was 60.93% while the same conditional on the principal not figuring out

the solution was 29.95%.31

31Similarly, the agents’ average estimate of the success rate is 53.41% when they found the
solution but only 32.86%when they did not.
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More importantly, we can compare the estimates of the principals in the in-

formed treatment who were given the solution to the estimates of the principals

in the uninformed treatment who were not given the solution but who did figure

this out themselves. If any systematic distortion in conditional estimates is due to

informational projection only, then these two should be the same. We do find that

the estimates of the principals who spotted the difference in the uninformed treat-

ment (60.93%) is very close to the estimates of the principals who were given the

solution in the informed treatment (57.45%). This finding provides further sup-

port for our basic premise that the distortion in the principals’ estimates is due to

informational projection as opposed to some alternative psychological mechanism

whose implications would greatly differ in the way information is acquired, e.g.,

problems that one solves may appear more difficult while problems for which one

is exogenously given the solution just appear too easy.

5.3 Conclusion

This paper studies people’s perception of the biases of others. While a host of ro-

bust findings demonstrate that people engage in limited informational perspective

taking the very meaning and implications of such a social bias in strategic settings

crucially depend on the extent to which people simultaneously also anticipate this

tendency in each other. Our study lends surprisingly strong empirical support to

the parsimonious model of projection equilibrium which, by proposing a mode of

partial bias, postulates a tight link between these two. It also confirms the realism

of the underlying notion of a partial belief bias. Most people are neither fully naive

nor sophisticated about the biases of others. Instead they explicitly believe that

others are partially biased but, in proportion to their own bias, underestimate its

extent in others.

Our results also illustrates well the potential of obtaining key novel insights by

eliciting higher-order beliefs in studying models of biased social cognition. While

there are multiple factors that might impact strategic behavior and help capture

departures from classic rational choice outcomes in social settings, it is the pat-

tern in higher-order beliefs, beliefs about those biases, that may be essential in

providing a more careful account. For example, if players had biased beliefs about
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others (informed players exaggerated the performance of uninformed players) be-

cause everyone thinks others are just like them, then it is impossible to account for

the partial anticipation of this exaggeration by the agents, as would be manifest in

defensive medicine or successful deception, as predicted by projection equilibrium

even in homogenous populations, and established by our findings. More generally,

eliciting higher-order beliefs help better understand the nature of biased cognition

and help guide modeling choices. For example, in the case of cursed equilibrium,

Eyster and Rabin (2005) players may not be able to hold coherent beliefs about

how others, e,g., may hold a mixture of incoherent and correct beliefs. Instead

we find that a fully coherent but parsimoniously and significantly biased belief

hierarchy provides a very good description of the actual data. The findings may

also help shed light on the robustness of the basic mistake to debiasing method,

e.g., Wu et al. (2010). People may well be aware of a mistaken tendency such

as hindsight bias and learn to anticipate it in others, yet consistently continue to

suffer from it themselves.

Providing empirical support for projection equilibrium, which includes the idea

that measuring the basic mistake may be sufficient to pin down the entire structure

of the bias and the simultaneous presence of the basic mistake and limited learning

about the mistakes of others, is potentially helpful for understanding various eco-

nomic problems such as the relationship between information and incentives (e.g.,

Holmström 1979), the link between risk taking and the allocation of responsibility

or liability in agency settings (e.g., Harley 2007 argues that hindsight bias is a key

factor in the judgement of jurors in courts), or the functioning of authority in or-

ganizations (Aghion and Tirole, 1997). In all these settings the basic mistake and

its anticipation in others jointly matter. Our findings are also consistent with the

application of projection equilibrium to other strategic settings. In particular, in

the classic context of bilateral trade with common values and private information,

Madarasz (2016) finds that the model provides a very close fit of the experimental

data (e.g., Samuelson and Bazerman, 1985; Holt and Sherman, 1994).32 Future

research can explore the extent to which the anticipation of the biases of others

32The degree of the bias which explains the aggregate empirical findings in that context is
consistent with the extent of information projection found in the current study.

33



is directly present also in other social contexts (e.g., Mobius et al. 2014) and the

relationship between such anticipation and a basic mistake itself.
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Appendix

5.4 Proofs for Section 3

We now formally present the predictions based on projection equilibrium stated

in Madarasz (2016).33 Since the reference agents solving the task have no relevant

strategic interactions, we can introduce a representative reference agent and de-

note it by A. This is a short-hand for the ex ante expected average performance

of the population of reference agents. With a slight abuse of notation, we can

then represent the average success rate of the reference agents in a realized state

ω by maxx∈D E[f(ω, x) | PA(ω)]]. The ex-ante expectation of this is then Eω[

maxx∈D E[f(ω, x) | PA(ω)]] = π. Finally, throughout the analysis we assume that

all estimates by all players are formed at the time of solving the basic task, that is,

prior to any feed-back. Below, E refers to the expectations operator with respect

to the true distribution of actions and signals in the game.

Let EρP denote the expectations of a ρP−biased principal. The ex-ante ex-

pected estimate of π by the principal is:

Eω

[
EρP [max

x∈D
E[f(ω, x) | PA(ω)] | PP (ω)]

]
.

Using the definition of projection equilibrium, we obtain that:

Eω

[
ρP max

x∈D
E[f(ω, x) | PP (ω)] + (1− ρP )E[max

x∈D
E[f(ω, x) | PA(ω)] | PP (ω)]

]
This then becomes:

ρPEω

[
max
x∈D

E[f(ω, x) | PP (ω)]

]
+ (1− ρP )E[max

x∈D
E[f(ω, x) | PA(ω)] | PP (ω)],

which equals ρP (d+ π) + (1− ρP )π = π + ρPd as stated in Claim 1.

Let EρA denote the expectations of a ρA−biased agent. The ex-ante expected

first-order estimate of π by the agent is:

33See Section 5 of Madarasz (2016).
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Eω

[
EρA [max

x∈D
E[f(ω, x) | PA(ω)] | PA(ω)]

]
= ρAEω

[
max
x∈D

E[f(ω, x) | PA(ω)]

]
+ (1− ρA)E[max

x∈D
E[f(ω, x) | PA(ω)] | PA(ω)].

This then becomes ρAπ + (1− ρA)π = π which establishes the first part of Claim

2.

Consider now the agent’s ex-ante expected second-order estimate, the estimate

of the principal’s estimate of π,

Eω

[
EρA [EρP [max

x∈D
E[f(ω, x) | PA(ω)] | PP (ω)] | PA(ω)]

]
.

Using the definition of projection equilibrium we can re-write this as:

Eω

[
ρAE[max

x∈D
E[f(ω, x) | PA(ω)] + (1− ρA)E[EρP [max

x∈D
E[f(ω, x) | PA(ω)] | PP (ω)] | PA(ω)]

]
The first part of the above expression is based on the feature of projection equilib-

rium that the agent believes that the projected versions of the other players, that

is, the projected versions of the reference agents and the principal, all of whom

have the same first-order beliefs about the solution to the basic task as the agent

does, occur in a perfectly correlated fashion. Furthermore, these respective pro-

jected versions of others know that they occur in a perfectly correlated manner.

We can then re-arrange the above expression to obtain:

ρAπ + (1− ρA)Eω[E[EρP [max
x∈D

E[f(ω, x) | PA(ω)] | PP (ω)] | PA(ω)]]

Given Claim 1, the above then equals term equals ρAπ + (1 − ρA)(π + ρPd) =

π + (1− ρA)ρPd as stated in Claim 2.

5.5 Proofs for Section 4.5

The specification for the principal follows from above. Consider now the agent’s

estimate conditional on the agent’s own success rate. If the agent figures out the
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solution, her success rate given her own information on the basic task is 1. If

the agent does not figure it out, it is some number weakly higher than 0, e.g.,

random clicking on a 7x7 grid does allow for a positive chance of success. For

short, we denote the agent’s estimate of her own success rate by the variable

[own success]. We can now express the agent’s conditional second-order estimate.

Under projection equilibrium agent j’s stated second-order estimate in task t is

then given by:

bIIAjt = ρAj
[own success] + (1− ρAj

)E[bIPit | agent j’s info] (5)

Note also that

bIAjt = ρAj
[own success] + (1− ρAj

)E[πt | agent j’s info]. (6)

By substituting in Eq(6) into Eq(5), we get that bIIAjt
= bIAjt

−(1−ρAj
)E[πt |agent

j’s info] + (1− ρAj
)E[bIPit

|agent j’s info]. Hence, bIIAjt
= bIAjt

− (1− ρAj
)πt + (1−

ρAj
)(ρP +(1−ρP )πt)+εj,t = bIAjt

+(1−ρAj
)ρP (1−πt)+εj,t where εj,t is a mean-

zero error term describing the difference between the ex ante expected mean of a

random variable and its realization.
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5.6 Supplementary analysis

5.6.1 Stated beliefs of the principals

Figure 5: Distribution of average first-order beliefs per principal in the informed
and the uninformed treatment.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u
m

u
la

ti
v
e 

d
is

tr
ib

u
ti

on
 f
u
n
ct

io
n

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average first-order belief (estimate of the success rate) per principal

Uninformed principal

Informed principal

T
ru

e 
su

cc
es

s 
ra

te

.1
.2

.3
.4

.5
.6

.7
.8

S
u
cc

es
s 

ra
te

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Period

Informed principals Uninformed principals Actual success rate
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5.6.2 Investment decisions of the agents

Figure 7: Distribution of individual investment rates in the informed and the
uninformed treatment.
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Table 2: Propensity to invest conditional on treatment and
successful task completion.

Dependent variable Investment decision
(Probit) (1-investment, 0-no investment)

(1) (2) (3)

Treatment −0.727∗∗∗ −0.754∗∗∗ −0.738∗∗∗

(1-informed) (0.205) (0.211) (0.221)

Success 0.429∗∗∗ 0.451∗∗∗

(1-task solved) (0.096) (0.126)

Treatment×Success −0.040
(0.190)

Constant 0.467∗∗∗ 0.299∗∗ 0.291∗∗

(0.146) (0.149) (0.147)

N 1410 1410 1410
R2 −916.436 −897.552 −897.512
F 12.575 29.023 29.581

Note: Values in parentheses represent standard errors corrected for clus-
ters on the individual level. Asterisks represent p-values: ∗p < 0.1,
∗∗p < 0.05, ∗∗∗p < 0.01.

Table 3: Regressions of individual investment rates on treatment, gender, and risk
attitude.

Dependent variable Individual investment rate

(OLS) (1) (2) (3) (4) (5)

Treatment −0.281∗∗∗ −0.279∗∗∗ −0.255∗∗ −0.259∗∗∗ −0.254∗∗

(1-informed) (0.075) (0.075) (0.102) (0.077) (0.102)

Gender −0.059 −0.032 −0.048
(1-female) (0.075) (0.108) (0.109)

Treatment×Gender −0.053 −0.009
(0.151) (0.157)

Coef. risk aversion −0.026 −0.024
(DOSE) (0.022) (0.023)

Constant 0.673∗∗∗ 0.698∗∗∗ 0.687∗∗∗ 0.695∗∗∗ 0.715∗∗∗

(0.053) (0.063) (0.071) (0.057) (0.076)

N 94 94 94 94 94
R2 0.134 0.140 0.141 0.147 0.151
F 14.230 7.390 4.920 7.813 3.960

Note: Values in parentheses represent standard errors. Asterisks represent p-values: ∗p < 0.1,
∗∗p < 0.05, ∗∗∗p < 0.01.
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5.6.3 Stated beliefs of the agents
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Figure 9: Agents’ first-order beliefs (estimates of the success rates of the reference
agents) and second-order beliefs (estimates of the principals’ estimate) over time,
conditional on being matched with informed or uninformed principals.
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Figure 11: Stated and (average) predicted estimates of the agents. The solid line
with circle (triangle) markers shows the agents’ average first-order (second-order)
estimate per period. The dashed line shows the agents’ average second-order
estimate per period predicted by individual ρ estimates from equation (4). The
line is obtained by predicting each agents’ second-order belief for each period and
then calculating the average predicted second-order estimate per period.
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Table 4: Agents’ average first-order beliefs (estimate of the suc-
cess rates) conditional on treatment and successful task com-
pletion.

(1) (2) (3)

Informed 0.002 0.004 0.015
(0.034) (0.033) (0.040)

Success 0.206∗∗∗ 0.222∗∗∗

(0.020) (0.028)
Informed*Success −0.033

(0.040)
Constant 0.397∗∗∗ 0.327∗∗∗ 0.321∗∗∗

(0.027) (0.028) (0.030)

R2 0.000 0.253 0.255
N 470 470 470

Note: OLS regressions. Values in parentheses are standard errors corrected

for clusters on the individual level: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

Table 5: Individual differences between second-order
beliefs and first-order beliefs conditional on treatment
and successful task completion.

Dependent variable (bA2,t,i − bA1,t,i)

(OLS) (1) (2) (3)

Treatment 0.068∗∗∗ 0.068∗∗∗ 0.067∗∗∗

(1-informed) (0.019) (0.019) (0.024)

Success −0.039∗∗∗ −0.041∗∗

(1-task solved) (0.011) (0.017)

Treatment×Success 0.003
(0.022)

Constant 0.044∗∗∗ 0.058∗∗∗ 0.058∗∗∗

(0.015) (0.017) (0.019)

N 470 470 470
R2 0.090 0.117 0.117
F 12.828 17.767 13.296

Note: Values in parentheses represent standard errors corrected
for clusters on the individual level. Asterisks represent p-values:
∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table 6: Mean individual differences in second-order beliefs (estimate of the prin-
cipal’s estimate) and first-order beliefs bA1,i (estimate of success rate) by treatment
and further controls.

Dependent variable (bA2,i − bA1,i) = T−1
∑

t(b
A
2,i,t − bA1,i,t)

(OLS) (1) (2) (3) (4) (5)

Treatment 0.068∗∗∗ 0.067∗∗∗ 0.089∗∗∗ 0.073∗∗∗ 0.090∗∗∗

(1-informed) (0.019) (0.019) (0.024) (0.020) (0.024)

Gender 0.013 0.047 0.045
(1-female) (0.020) (0.029) (0.030)

Treatment×Gender −0.062 −0.056
(0.040) (0.041)

Coef. risk aversion −0.006 −0.004
(DOSE) (0.006) (0.006)

Constant 0.044∗∗∗ 0.040∗∗ 0.030∗ 0.048∗∗∗ 0.034∗

(0.014) (0.015) (0.016) (0.014) (0.017)

N 47 47 47 47 47
R2 0.220 0.228 0.270 0.236 0.278
F 12.720 6.490 5.289 6.787 4.035

Note: Values in parentheses represent standard errors. Asterisk represent p-values: ∗p < 0.1,
∗∗p < 0.05, ∗∗∗p < 0.01.
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5.7 Estimating projection equiblibrium parameters
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Figure 12: Beta distribution with alternative parameterization x ∼ Beta(µ, φ)
(Ferrari and Cribari-Neto, 2004).
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Figure 13: CDFs of principals’ (solid) and agents’ (dashed) projection bias ρ in
the informed treatment with alternative specification replacing the success rates
πt with the agents’ first-order estimates bIAjt

in (4). Black lines represent empirical
CDFs; gray lines represent best-fitting beta CDFs.
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